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Abstract: Numerical simulations of two-dimensional, steady, incompressible lid driven flow in 

a square cavity were investigated in this work. A commercial finite volume package of ANSYS-

FLUENT was used to analyze and visualize the nature of the flow inside the cavity at different 

Reynolds Numbers. In addition, a MATLAB code was developed and validated by comparing the 

results with the reference values from literature. Staggered grid was employed in the 

discretization of the cavity to avoid checkerboard pressure while developing the code. The 

governing equations were discretized in terms of velocity and pressure fields. The artificial 

compressibility method was used to de-couple the pressure and velocity terms in the governing 

equations. A 129×129 grid system was used in both cases. The effects of Reynolds number 

(100          on the flow characteristics were illustrated through an analysis of stream 

function, velocity vector, pressure co-efficient and velocity contours. The thinning of the wall 

boundary layers with an increase in the Reynolds number is evident from the u and v velocity 

profiles along the vertical and horizontal lines at the geometric center, although the rate of this 

thinning is very slow for Re > 5000.  

Keywords: Lid Driven Cavity, Reynolds Number, Artificial Compressibility Method, Fluid Flow 

Characteristics. 

 

1. INTRODUCTION 

The lid-driven cavity flow is the motion of a fluid 

inside a rectangular cavity created by a constant 

translational velocity of one side while the other sides 

remain at rest. Fluid flow behaviors inside lid driven 

cavities have been the subject of extensive 

computational and experimental studies over the past 

years. Applications of lid driven cavities are widely 

seen in material processing, dynamics of lakes, metal 

casting and galvanizing.  

The investigation of a lid-driven flow in 

a rectangular cavity is motivated by three major 

factors. First, this flow is an idealized representation 

of several engineering situations, such as the flow over 

cutouts and repeated slots on the walls of heat 

exchangers or on the surface of aircraft bodies. 

Second, the lid-driven cavity flow offers the 

opportunity to study a "stationary, captive" primary 

vortex. Third, the regular geometry and easily posed 

boundary conditions have made this flow a popular 

test case for computational schemes, giving rise to a 

need for an accurate data base against which such 

schemes may be validated [2]. Research into the lid-

driven cavity flow structure is an area of continuing 

interest and was selected for a benchmark study in 

a major international workshop [3]. Hou et al. [4] have 

used the lattice Boltzmann method for simulation of 

the cavity flow. They have used 256 × 256 grid points 

and presented solutions up to Reynolds numbers of Re 

= 7500. In recent times, Barragy and Carey [5] have 

used a p-type finite element scheme on a 257 × 257 

strongly graded and refined element mesh. The 

authors have obtained a high solution for steady cavity 

flow solution for up to Reynolds numbers of Re = 

12,500. Although Barragy and Carey have presented 

qualitative solution for Re = 16,000, they have 
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concluded that their solution for Re = 16, 000 was 

under-resolved and needed a far greater mesh size. 

According to Botella and Peyret [6], highly-accurate 

solutions for the lid-driven cavity flow are computed 

with the Chebyshev collocation method. Schreiber and 

Keller [7] have introduced an efficient numerical 

technique for steady viscous incompressible flows. 

The non-linear differential equations are solved by 

a sequence of Newton and chord iterations. Upon 

increasing the Reynolds number, the flows in the 

cavity of interest were found to comprise a transition 

from a strongly two-dimensional character to a truly 

three-dimensional flow and, subsequently, a bifurca-

tion from a stationary flow pattern to a periodically 

oscillatory state. Finally, travelling wave instability 

further induced longitudinal vortices, which are 

essentially identical to Taylor–Gortler vortices [8]. 

Ercan Erturk presented that physically, the flow in 

a driven cavity is neither two-dimensional nor steady, 

most probably, even at Re=1,000. At high Reynolds 

numbers, when the incompressible driven cavity flow 

is considered as two dimensional and also steady, then 

the considered flow is a fictitious flow. It would be 

needless to study the hydrodynamic stability of 

a fictitious flow, i.e. the 2-D steady incompressible 

flow in a driven cavity at high Reynolds numbers [9]. 

Bruneau and Saad [10], have pointed out that driven 

cavity flows exhibit almost all the phenomena that can 

patterns, chaotic particle motions, instability, and 

turbulence. Critical comparison with the former 

numerical experiments confirms the high-accuracy of 

the method, and gives extensive results for the flow at 

Reynolds number Re = 1000. In this paper, flow 

analysis is done for a square lid driven cavity using 

a commercial software called ANSYS 16.1. The effect 

of Reynolds number is investigated and solutions are 

obtained for configurations with several Reynolds 

numbers such as 100, 400, 1000, 3200, 5000, 7500 

and 10,000 and meshes consisting of as many as 129 × 

129 points. Then, a self- written code in MATLAB is 

developed with proper discretization. Finally, a com-

parison of the two simulation results is presented.  

2. MATLAB CODE DEVELOPMENT 

A self-written MATLAB code was developed to 

simulate the flow in a square lid driven cavity. The 

whole procedure can be divided into mainly three 

parts which are the development of the code, 

simulation and lastly matching the results with the 

benchmark for validation. The problem statement is 

discussed with Figure 1 given below. The square 

domain is taken where the left wall, the right wall and 

the bottom wall are completely stationary. Therefore, 

on those walls, u velocity and v velocity that is the 

horizontal and the vertical velocity, respectively is 0 

while the top wall is moving and because it is moving 

in the x-direction, only the u component of the 

velocity has some value which has been shown in 

Figure 1 that is u=U and the vertical velocity is zero.  

  

Fig. 1. Geometry 

  

Fig. 2. Grid formation 

The first step to solve the equation is to discretize 

the domain or to create the mesh which means the 

whole domain is divided into small parts and an 

analysis will be done on every single small part 

individually. Figure 2 shows a very simple Cartesian 

and structured mesh that is created in where the whole 

square is divided into a number of smaller squares.  

The macroscopic variables of interest in 

conventional numerical methods, such as velocity and 

pressure are usually obtained by solving the Navier-

Stokes equation. Such numerical methods for two 

dimensional steady incompressible Navier-Stokes 

equations are often tested for code validation. The one 

sided lid-driven square cavity flow has been used as 

a benchmark problem for many numerical methods 

due to its simple geometry and complicated flow 

behaviors [11]. Initial attempts to solve the Navier–

Stokes equations employed straightforward centered 

finite differences to the spatial operators on a regular 

grid, with the pressure and velocity components being 

unknown at the corners of each cell. Two types of 

instabilities are soon discovered, associated with this 

type of spatial discretization. The pressure can be 

highly oscillatory or even undetermined by the 

discrete system, although the corresponding velocities 

may be well approximated. The reason for this 

phenomenon is that the symmetric difference operator 

will annihilate checkerboard pressures, i.e., pressures 

which oscillate between 1 and -1 on each grid line 

connecting the grid points. In fact, if the vertices are 

colored in a checkerboard pattern, then the pressure at 

the black vertices will not be related to the pressure at 

the white vertices. Hence, the pressure is undeter-
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mined by the discrete system and wild oscillations or 

overflow will occur. 

The remedy for oscillatory or checkerboard 

pressure solutions is, in a finite difference context, to 

introduce a staggered grid in space [12]. This means 

that the primary unknowns, the pressure and the 

velocity components, are sought at different points in 

the grid such as the displacement of velocity 

components rather being on the nodal points. Figure 3 

displays such a grid in 2D. In this way, staggering of u 

and v velocity is done, which means that instead of 

defining the u and v velocity at the nodal point, they 

are defined at the half distance from the node. Finally, 

7 by 8 mesh and 8 by 7 mesh will be created for the 

whole domain for u and v velocity respectively. 

Pressure points are located at the center of the squares. 

Here, an 8 by 8 mesh will be created for pressure 

points. The points of all these three variables are 

shown in Figure 3. It becomes very complicated when 

all the things are put together. Figure 3 contains three 

small volumes colored by blue, green and brown 

which describes the relationship between u, v and 

pressure point locations in the whole domain. The 

partial differential form of the governing equations are 

converted to system of algebraic equations form for 

each control volume. The analysis is done on the grids 

one by one. From every analysis, a new velocity and 

pressure will be obtained which will be used to find 

the consecutive values. Now, the conversion of X 

momentum equation is described through the green 

Colored area of the Figure 4. Here, the v velocities are 

denoted by 1,2,3 & 4 which are at the corner points. 

Pressure points are shown through the yellow points 

denoted by w & e at the left and right wall.  

 

Fig. 3. Combination of velocity and pressure grid 

 

Fig. 4. X momentum equation conversion 

  

Fig. 5. Conversion of Continuity equation 

The capital letters N, P, S, W & E denote the 

u velocities at the center and around the control 

volume. From the X momentum equation, it is seen 

that the first term is a time derivative:  
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This term includes the unsteadiness in local flow. 

Equation (2) to Equation (6) are discretization of each 

term in Equation (1): 
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The next step is to solve the continuity equation. 

Originally, the continuity equation is the divergence of 

the velocities is zero: 
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But here, an extra term is added in the equation 

and for this additional term, this method is called an 

artificial compressibility method. This term is added 

on purpose. One of the early techniques proposed for 

solving incompressible Navier-Stokes equations in 

a primitive variable form is the artificial 

compressibility method of Chorin [13]. In this method, 

the continuity equation is modified to include an 

artificial compressibility term which vanishes when a 

steady state solution is obtained. The artificial term is 

the form of   and for this it behaves like compressible 

flow. This particular scheme is more simple and easier 

than other methods like pressure correction method. In 

the equation,   denotes the artificial compressibility 

constant. Usually, this value is taken as unity as 

described by Chorin [13]. The conversion of 

continuity equation is shown by the second equation: 
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The updated velocities are already known from X 

and Y momentum equation. From continuity equation, 

it will be able to know the updated pressure. The 

artificial term,   (artificial compressibility constant) 

actually makes this possible. It decouples the pressure 

and velocity terms in incompressible equation very 

simply for which there is no need to use any pressure 

correction scheme. Now, after completing 

discretization and conversion, boundary condition 

should be employed properly,; otherwise it is not 

possible to get the correct result. As it is already 

known that the left, bottom and top boundaries are 

stationary that means u and v velocities should be 

made zero. This is the reason behind the extra layer of 

u velocity. To maintain the velocity zero at the bottom 

wall, this extra layer of velocity (-u) m/s is used so 

that the average will be made zero at the points on 

bottom wall. But the top wall is moving with 

a velocity for example, the value is taken as 1 m/s. So, 

to keep the velocity 1 m/s at the points on the top wall, 

the upper and lower velocities of the top wall should 

be maintained as velocity 1 m/s so that the average 

will be 1 m/s. For the v velocity, similar procedure is 

applied. Across the boundaries, there should be no 

pressure difference as no flow occurs across the 

boundaries. To maintain no flow across the 

boundaries, pressure at interior and exterior points 

across each boundaries should be equal so that there 

will be no pressure gradient and no flow will occur.  

3. CODE ALGORITHM 

3.1. Defining the variables 

Set the value of x grid y grid, height of the 

geometry, length of the cavity geometry, velocity of 

the lid, residual: 

 grid_x = 129, 

 grid_y = 129, 

 length = 1; %Lenght of the geometry, 

 height = .5; %Height of the geometry, 

 steps = 1; %Number of steps that the calculation 

run. Initially we assume it as one, 

 velocity = .00010048; %Velocity of the top wall. 

User can change it. It will dynamically change; 

 residual = .000001; %this is residual. How 

accurate we are trying to get the results. 

3.2. Set the value of known property  
Density of the water(ρ), dynamic viscosity 

(μ),Time setps (dt): 

 row = 998.2; %It is Greek letter row. which 

represents the density of water; 

 miu = .001003; % It’s a Greek letter miu. which 

represents the dynamic viscosity of water; 

 dt = 0.001; %Time steps. 

3.3. Calculating the required properties 

Reynolds number from the following equation: 

     
       

 
 . (9) 

Reynolds number is a dimensionless value where 

L is the cavity length, U is the flow velocity attached 

to the upper lid,   is the density of fluid and   is the 

dynamic viscosity. Unit length of the grid along x 

direction (dx), Unit height of the gird along y direction 

(dy): 

 Re = (row * velocity * alength) / miu; %We are 

calculating the Reynolds number here; 

 dx = alength/(grid_x-1); %Lenght of each small 

grid; 

 dy = height/(grid_y-1); %Height of each small 

grid. 

3.4. Defining the array  
Here array is defined according to the required 

size. For example, for u velocity the array size will be 

(grid_x,grid_y+1) as discussed in the above: 

 u = zeros(grid_x,grid_y+1); %axis. It's the initial 

velocity; 

 un = zeros(grid_x,grid_y+1); % It’s% It denotes 

the new velocity of u; 

 uc = zeros(grid_x, grid_y); % It’s% It denotes the 

central velocity of u; 

 v = zeros(grid_x+1,grid_y); % It’s the initial 

velocity of v which acts as velocity at y axis; 

 vn = zeros(grid_x+1,grid_y); % It’s% It denotes 

the new velocity of y; 

 vc = zeros(grid_x, grid_y); % It’s% It denotess the 

central velocity of y; 

 p = ones(grid_x+1,grid_y+1); % It’s the initial 

pressure; 

 pn = zeros(grid_x+1,grid_y+1); % It’s the new 

pressure; 

 pc = zeros(grid_x,grid_y); %It represents the 

central pressure; 

 m = zeros(grid_x+1,grid_y+1); %This matrix will 

be used to calculate the errors. 

3.5. Setting the initial u & v velocity 
For u velocity the value of all the points will be 

zero except for the velocity of top two point, which 

will be the same as the velocity that set in step one. 

For v velocity, the value of all the points will be zero. 

As the lid doesn’t have any velocity component on 

vertical direction. And for setting this velocity, no 

extra code is needed as the array was defined with 

MATLAB built in function zeros. 
 

for i = 1:(2) 

for j = 1:grid_y+1 

u(i,j) = 0; 

u(i,grid_y+1) = velocity;//This 

velocity is set on step one. 

u(i,grid_y)=velocity; 
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end 

end 

3.6. Solving the u velocity 
Here the new u velocity is calculated by using the 

algebraic form of x-momentum equation. Which is 

described above. This new u velocity is stored in 

another array un. 
 

for i=2:grid_x-1 

for j = 2:grid_y 

un(i,j) = u(i,j) - dt*( 

(u(i+1,j)*u(i+1,j)-u(i- 

1,j)*u(i-

1,j))/2.0/dx+0.25*((u(i,j)+u(i,j+1)

)*(v(i,j)+v(i+1,j))-(u(i,j)+u(i,j-

1))*(v(i+1,j-1)+v(i,j-1)) )/dy ) - 

dt/dx*(p(i+1,j)-p(i,j)) + 

dt*1.0/Re*( (u(i+1,j)-

2.0*u(i,j)+u(i-1,j))/dx/dx 

+(u(i,j+1)-2.0*u(i,j)+u(i,j-

1))/dy/dy ); 

end 

end 

 

Left and right wall is stationary so we need to set 

the new velocity zero at the left wall and right wall. 
 

for j=2:grid_x 

un(1,j) = 0;%This will set velocity 0 

at the left wall 

un(grid_x,j) = 0;%This will set 

velocity 0 at the right wall. 

end 

 

Bottom wall is also stationary. So the average of 

u(i,1) and un(i,2) will be zero: 

 
               

 
   , (10) 

                  . (11) 

The top wall is moving. Its velocity was set on 

step one. Its velocity needs to be same on all the 

iteration of the while loop. 

 
                           

 
          , (12) 

                                        . 

 

for i=1:grid_x 

u(i,1) = -un(i,2); 

un(i,grid_y+1) =2.0*velocity -

un(i,grid_y); 

end 

 

In a similar manner, the v velocity is solved. 

3.7. Solving the continuity equation 
The algebraic form of the continuity equation is 

solved here. For the proper result, the updated u and v 

velocity which has been stored in un and vn is used. 

By solving the continuity equation, the pressure can be 

determined. Relevant code: 

for i=2:grid_x 

for j=2:grid_y 

pn(i,j) = p(i,j)-dt*delta*( ( 

un(i,j)-un(i-1,j) )/dx + ( vn(i,j)-

vn(i,j-1) ) /dy ); 

end 

end 

 

As no fluid passes through the wall so the pressure 

will be same between the two grid of the wall. So 

pn(i,1)=pn(i,2). 
 

for i=2:grid_x 

pn(i,1) = pn(i,2);%This will set the 

bottom imaginary pressure as the 

bottom pressure. 

pn(i,grid_y+1) = pn(i,grid_y);%This 

will set the top imaginary pressure as 

the top pressure. 

end 

for j=1:grid_y+1 

pn(1,j) = pn(2,j);%This will set the 

left imaginary pressure as the left 

pressure. 

pn(grid_x+1,j) = pn(grid_x,j);%This 

will set the right imaginary pressure 

as the right pressure. 

end 

3.8. Calculating the error 
Initially, the error is set to 0 to replace the previous 

error value in while loop. The error of any point is the 

divergence of the velocity. The error is calculated for 

all the points. And all the error value of all the point is 

summed up. 
 

error = 0; 

for i=2:grid_x 

for j=2:grid_y 

m(i,j) = ( ( un(i,j)-un(i-1,j) )/dx 

+ ( vn(i,j)-vn(i,j-1) )/dy ); 

error = error + abs( m(i,j) ); 

end 

end 

3.9. Displaying error & redefining u,v and p 
The error is shown after every 1000 steps. 

 

if rem(steps,1000) == 0 

fprintf( 'Error is %f for the step 

%f\n',error,steps); 

end 

 

The value of u,v and p is set from the value un, vn, 

pn. So that for next iteration of while loop the updated 

value of u,v and p is used. 
 

for i=1:grid_x 

for j=1:grid_y+1 

u(i,j) = un(i,j); 

end 

end 

for i=1:grid_x+1 

for j=1:grid_y 

v(i,j) = vn(i,j); 
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end 

end 

%putting the p new velocity to p velocity 

for i=1:grid_x+1 

for j=1:grid_y+1 

p(i,j) = pn(i,j); 

end 

end 

3.10. Calculating the grid point value 
So far, the staggered velocity and pressure have 

been calculated. Staggered velocity and pressure is 

averaged to get the grid point value. 
 

for i=1:grid_x 

for j=1:grid_y 

uc(i,j) = 0.5*(u(i,j)+u(i,j+1)); 

vc(i,j) = 0.5*(v(i,j)+v(i+1,j)); 

pc(i,j)=0.25*(p(i,j)+p(i+1,j)+p(i,j

+1)+p(i+1,j+1)); 

end 

end 

4. RESULTS VALIDATION AND 

DISCUSSION 

The present work can be divided into three parts. 

A MATLAB code is developed at first to simulate the 

driven cavity flow, secondly, code validation is done 

comparing the results with experimental values from 

Ghia et al. [1] for Reynolds number 100, 1000 and 

5000 and also with the results from commercial 

software ANSYS FLUENT 16.1. Thirdly, the effect of 

Reynolds number on the driven cavity flow is 

investigated. The ANSYS simulation was done first. 

Three types of mesh were used that are 129x129, 

161x161 and 257x257. The results from each mesh 

size match very closely with one another. Thatis why 

129x129 mesh size is used for every simulation in this 

study as it becomes easier and less time consuming to 

simulate the flow with MATLAB code. The reference 

paper Ghia et al. [1] also represented their results with 

the mesh size 129x129. The u and v profile results 

done by MATLAB along the vertical line and 

horizontal line respectively through the geometric 

center for Re=100, 1000 and 5000 are compared with 

Ghia and ANSYS simulation in Figure 6 and 7.  

As velocity changes with the change of Re where, 

   
  

 
, (L is the cavity length) velocity ranges from 

.0001 to .01 as Re increases from 100 to 10,000 in this 

investigation. Each graph shows the same manner of 

velocity change at various Reynolds numbers.  

The thinning of the wall boundary layers with an 

increase in Reynolds number is evident from the 

profiles in Figure 6 and 7, although the rate of this 

thinning is very slow for Re > 5000. The near linearity 

of these velocity profiles in the central core of the 

cavity is indicative of the uniform vorticity region that 

develops here for large Reynolds number. The high 

Reynolds number profiles of u exhibit a kink near y = 

1, while a similar behavior is observed for the v 

profiles near x = 1. Such behavior has been reported 

by some previous investigators, and it is seen to persist 

in the present ANSYS and MATLAB solutions. This 

would imply that the velocity distributions near these 

walls are not extremely sensitive to mesh size.  

   

   

Fig. 6. Computed u-velocity profile along a vertical line passing through the geometric center (X=.5) of the cavity at Re=100, 
Re=1000 and Re=5000 respectively 

   

Fig. 7. Computed v-velocity profile along a horizontal line passing through the geometric center (Y=.5) of the cavity at 

Re=100, Re=1000 and Re=5000 respectively 
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Fig. 8. Computed pressure coefficient along a horizontal 

line passing through the geometric center of the 
cavity (at Y= 0.5) at various Reynolds Number 

 

Fig. 9. Computed pressure coefficient along a vertical line 

passing through the geometric center of the cavity 
(at X= 0.5) at various Reynolds Number 

  

  

Fig. 10. Stream Function contour at (a) Re=100, (b) 

Re=1000, (c) Re=3200 & (d) Re=7500 

The dimensionless pressure drop coefficient for 

the cavity is an important parameter in the design of 

the cavity. The pressure drop coefficient is a strong 

function of the position and the Reynolds number. 

From Figure 8 and 9, It can be noted that the pressure 

drop coefficient is higher for a lower Reynolds 

number. The pressure drop coefficient attains its 

maximum value within the above half cavity, whereas 

for most Re, it gains the minimum value with the 

bottom half cavity.  

The streamline contours for the cavity flow 

configurations with Re increasing from 100 to 7500 

are shown in Figure 10. All the Figures show that 

a primary vortex is generated. Except for the top wall, 

other walls are stationary. Thus, fluid cannot move 

across these boundaries. Boundary layers are formed 

on the solid walls. Near the solid boundaries, viscous 

force is dominant with respect to the inertia force of 

the fluid. But, far from the solid boundaries, inertia 

forces become dominant and as boundary layers form 

on the left, right and bottom walls, due to inertia 

forces of the fluid faces an obstacle towards the flow 

near the boundary layers and for this reason, a change 

of momentum of fluid occurs that in turn creates 

rotation around the center. Eventually, the rotation of 

center turns into a vortex around which fluid rotates. 

In case of lower Re, the primary vortex is created near 

the top wall. As, Re increases and boundary layers 

near the solid walls are becoming thinner, the location 

of primary vortex changes downward towards the 

geometric center of the cavity. In the range of Re = 

100 to 1000, the location of primary vortex changes 

slowly. At Re = 3200, the location of primary vortex is 

near the geometric center and another small vortex is 

seen at the right-bottom corner of the cavity. This 

vortex is named as secondary vortex 1. This secondary 

vortex becomes larger with the increase of Re. 

Another secondary vortex is created at Re = 7500 at 

the left-bottom corner of the cavity. Also, a tendency 

to generate the third secondary vortex is observed at 

the top-left corner with the increase of the Re which is 

due to the fact that this vortex only becomes really 

apparent after Re=3200. 

5. CONCLUSIONS 

The investigation led to several conclusions: 

1. The thinning of the wall boundary layers with 

increase in Reynolds number is evident from u and 

v velocity profiles along the vertical and horizontal 

line at the geometric center, although the rate of 

this thinning is very slow for Re > 5000. 

2. The high Reynolds number profiles of u exhibit 

a kink near the top wall, while a similar behavior 

is observed for the v profiles near the right wall.  

3. The pressure drop coefficient is a strong function 

of the position and Reynolds number. The pressure 
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drop coefficient is higher for lower Reynolds 

number.  

4. The location of primary vortex moves downward 

towards the geometric center of the cavity with the 

increase of Reynolds Number.  

Nomenclature 

Symbols 

  – Density 

  – Horizontal Velocity 

  – Vertical Velocity 

    – Reynolds Number 

  – Kinematic Viscosity 

  – Artificial Compressibility Constant  
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